
CSE P503:

Principles of

Software

Engineering

David Notkin

Autumn 2007

Looking back, looking forward

Prediction is very difficult, especially of the future.

--Niels Bohr

The best way to predict the future is to invent it.

--Alan Kay

Software is the soul to the lifeless body of the

hardware. --Anonymous

UW CSE P503 David Notkin ● Autumn 2007 2

Tonight

• Brief coverage of several topics

– Software product lines

– Globalization of software engineering

– Economics-driven software engineering

– Intentional Programming

– Trust

• What I learned from p503 (after all, I told you it was

all about me)

• Final questions, discussion points, etc.

• Course evaluations

UW CSE P503 David Notkin ● Autumn 2007 3

Software product lines: wikipedia

• … refers to engineering methods, tools and
techniques for creating a collection of similar software
systems from a shared set of software assets using a
common means of production. …

• The characteristic that distinguishes software product
lines from previous efforts is predictive versus
opportunistic software reuse. Rather than put general
software components into a library in hopes that
opportunities for reuse will arise, software product
lines only call for software artifacts to be created
when reuse is predicted in one or more products in a
well defined product line.

UW CSE P503 David Notkin ● Autumn 2007 4

It takes a village…

• Software Reuse: Architecture, Process and Organization for

Business Success

I. Jacobson, M. Griss, P. Jonsson

• The basic idea is that systematic reuse – almost always in the

style of software product lines – demands that the entire

organizational structure, software process, and software

architecture be focused on reuse

• ―Using software product line techniques, companies such as

Nokia, HP, LSI Logic, Philips, and Cummins have improved

time-to-market, engineering costs, portfolio size and defect rates
by factors of 3 to 50.‖ softwareproductlines.com

– Ad hoc, serendipitous reuse may happen, but it won’t
provide significant value

UW CSE P503 David Notkin ● Autumn 2007 5

Software product line process

• Product Management

– This phase defines a scope, which tells what

should and should not be part of the family

• Domain Engineering

– This phase establishes a reusable platform by

defining a set of common and variable

requirements for all elements in the family

• Product Engineering

– A given product is derived from the reusable

platform, with the shared common requirements

plus instantiated specific requirements

UW CSE P503 David Notkin ● Autumn 2007 6

Globalization of software engineering

• Why globalize the engineering of software systems?

– Economics – less expensive labor, better access

to labor, faster product development

– Better access to global markets

– Team diversity can lead to better products

• What problems arise due to this globalization?

UW CSE P503 David Notkin ● Autumn 2007 7

Workshop on Accountability and Traceability in

Global Software Engineering

• ―The reality of modern software development involves

outsourcing, offshore development, and integration

[of empirical data] from multiple sources.

Unfortunately, corporate concerns often limit the

availability and use of empirical data outside the

project or company, which can make providing

accountability and traceability for such projects

difficult.‖

UW CSE P503 David Notkin ● Autumn 2007 8

Software Tag: NAIST and Osaka University

• Empirical Software Engineering Data for Traceability

and Transparency of Software Projects

• Basically the idea is to associate software metrics

with software elements, allowing customers to see

the metrics information and drawing their own

judgments

• There are huge questions – technical, legal, etc. –

but nonetheless it’s a reasonably refreshing idea

UW CSE P503 David Notkin ● Autumn 2007 9

A few observations

• Incredible investment and interest in China in software process,

software process certification, software process improvement

• Globalization faces many of the obvious complications – time

zone differences, language differences, increased demand on

precise interface definition, etc.

• Some have slightly surprising consequences in some situations

– Time zone differences not only time shifts but in many

organizations increases the length of the work week due to

the need for handoffs

– Language differences may be a plus if two teams

communicate in neither of the native languages – there are

fewer subtle expectations about non-native languages

UW CSE P503 David Notkin ● Autumn 2007 10

―Culture Can Confound Global Software

Metrics‖ [Notkin]

• Even when the corporations and people are willing

and able to share empirical data, there are numerous

cultural complications that must not be ignored

• There is evidence of this point from fields such as

medicine and labor statistics

UW CSE P503 David Notkin ● Autumn 2007 11

Medicine and Culture: Lynn Payer

• Medical information coding and interpretation varies

widely across four similar Western countries: USA,

UK, France, Germany

• For example

– A statistically significant difference in how doctors

in these countries report the cause of death for

some circumstances

– A German patient with low blood pressure may be

given prescription medicines, but in the U.S. the

same patient would likely get a discount on life

insurance

UW CSE P503 David Notkin ● Autumn 2007 12

Why should we care?

• Payer argues that these differences are not a

question of ―good medicine‖ vs. ―bad medicine‖ but

are due largely to differing cultures

• But ―[t]he widespread ignorance that medicine in

highly developed countries can be so different has a

number of serous implications. First, all sorts of

unjustified conclusions are currently being drawn

from international statistics…‖

UW CSE P503 David Notkin ● Autumn 2007 13

International labor statistics

• ―When making international comparisons of average

weekly hours of work, we suggest you carefully look

at the concept used and measured by countries.

Some countries provide data for hours actually

worked, which exclude hours paid for but not worked,

for annual leave, holidays, days off, personal leave,

etc.; while others calculate hours paid for only … On

the other hand, average weekly hours reflect effects

of numerous factors such as paid or unpaid

absenteeism, labour turnover, part-time work, strikes,

and fluctuations in work schedules for economic

reasons...‖ [International Labour Organization website]

UW CSE P503 David Notkin ● Autumn 2007 14

But what about software?

• If there is a statistically significant difference in the
way software engineers from different cultures, but
on the same project, report the cause of a failure in
some circumstances, this could affect reliability
models

• If engineers in one culture judge a software behavior
as an error, while others judge it as a feature, this
could affect the data underlying key metrics

• If measuring something as ―simple‖ as developer-
hours is itself complex and culturally-based, then
metrics derived based on it may be difficult to
compare with the desired effect

UW CSE P503 David Notkin ● Autumn 2007 15

Add on interpretation and intent …

• Metrics can be intentionally or unintentionally
interpreted differently, for many reasons – and culture
adds uncertainty

– Protecting the boss … or trying to take the boss’
job?

– What is the reward structure? Does it vary across
the participants in a global software engineering
project?

– …

• Intentions vary widely across cultures (see, for
example, More Like Us by James Fallows), which
may subtlety affect the use of data

UW CSE P503 David Notkin ● Autumn 2007 16

Global teams are vital

• The benefits of global software engineering go far

beyond direct economic benefits

• Bill Wulf argues that a diverse work force is

absolutely essential to ensure that the best designs

are found in all engineering disciplines

• Global teams that engineer software products will, in

the long run, produce better designs than a

monoculture

• Addressing the confounding of metrics due to varied

cultures is one key step towards an effective, diverse,

global work force for software engineering

UW CSE P503 David Notkin ● Autumn 2007 17

Economics-driven software engineering

(Sullivan)

• Modular software design architectures create value in at least two ways

– they support the delivery of properties for which people are willing
to pay

– they create opportunities to make follow-on investments to adapt a
design to deliver even more valuable properties

• Figuring out how to put a value on these opportunities is a real
challenge, especially when the potential benefits are uncertain

– Real options have the potential to address such questions

– However, real options techniques (e.g., using Black-Scholes or
binomial options pricing techniques) cannot be used directly
because they make deep assumptions about the nature and
measurability of the underlying uncertainties – and these
assumptions are generally invalid in the setting of design of
unprecedented systems

• So, how can one develop and validate options-like models for valuing
investments in modular design architectures?

UW CSE P503 David Notkin ● Autumn 2007 18

Core background

• DESIGN RULES: The Power of Modularity -- Carliss Y. Baldwin

& Kim B. Clark

– ―…IBM gave us the prototype of modularized design. This

book describes the history of that development, and then

extracts and generalizes the principles. The IBM System/370

was the first modularized mainframe. Hardware was done

first -- object-oriented software came later. Baldwin & Clark

claim that their principles apply equally to social and legal

institutions as well as technologies. Modularization could

improve the design of almost everything.‖ –W. Sheridan

• One key notion is the design structure matrix (DSM)

UW CSE P503 David Notkin ● Autumn 2007 19

DSM (for software) – Sullivan, Cai, Hallen,

Griswold

• A DSM represents dependencies among design parameters, the
range of choices that can be made about an aspect of a design

• Typical software design parameters include data structures,
algorithms, procedure and type signatures, graphical interface
look-and-feel, interoperability, and performance characteristics

• The rows and columns of a DSM are labeled by the design
parameters and dependences between two parameters are
marked

• Marking row B, column A means that an effective choice for B
depends on the choice for A

• Parameters that require mutual consistency—algorithm and
data structures often go hand-in-hand, for example—result in
symmetric markings

• Choosing the design parameters to model and the values they
finally take on is the task of the designer

UW CSE P503 David Notkin ● Autumn 2007 20

Yuanfang Cai: slide 1
• KWIC Sequential Design

UW CSE P503 David Notkin ● Autumn 2007 21

Slide 2
• KWIC Information Hiding Design

Design Rules

UW CSE P503 David Notkin ● Autumn 2007 22

Just the slightest flavor of EDSER

• Sullivan, Boehm, Shaw, Cai, and others for more

information

UW CSE P503 David Notkin ● Autumn 2007 23

Intentional Programming (Simonyi)

―WYSIWYG editors simplified document creation by

separating the document contents from the looks and

by automating the reapplication of the looks to changing

contents. In the same way Intentional Software

simplifies software creation by separating the software

contents in terms of their various domains from the

implementation of the software and by enabling

automatic regeneration of the software as the contents

change. This way, domain experts can work in parallel

with programmers in their respective areas of expertise;

and the repeated intermingling can be automated.‖

–OOPSLA 2006 abstract

UW CSE P503 David Notkin ● Autumn 2007 24

Technology Review

(Scott Rosenberg, Jan/Feb 2007)

• If Simonyi has his way, programmers will stop trying to manage their
clients' needs. Instead, for every problem they're asked to tackle--
whether inventory tracking or missile guidance--they will create generic
tools that the computer users themselves can modify to guide the
software's future evolution.

• Suppose an international bank wanted to develop a new system for
managing transactions in multiple currencies. First, the bank's own
domain experts would define the system's functionality, using their
customary terms and symbols and identifying the most important
variables ("time" or "value" or "size of transaction") and the most
common procedures ("convert holdings from one currency to another"
or "purchase hedge against falling value"). Then the programmers
would take that information and build a "domain specific" program
generator that embodies that information. A separate software tool
would allow the domain experts to experiment with different sets of data
and ways to view that data as easily as business­people today
rearrange their spreadsheets.

UW CSE P503 David Notkin ● Autumn 2007 25

Continued….

• Simonyi argues that his approach solves several of software

engineering's most persistent problems. Programmers today, he

often says, are "unwitting cryptographers": they gather

requirements and knowledge from their clients and then,

literally, hide that valuable information in a mountain of

implementation detail--that is, of code. The catch is, once the

code is written, the programmers have to make any additions or

changes by modifying the code itself . That work is painful, slow,

and prone to error. We shouldn't be touching the code at all,

Simonyi says. We should be able to design functions and data

structures--which intentional programming represents as

"intentional trees"--and let the generator modify the code

accordingly.

UW CSE P503 David Notkin ● Autumn 2007 26

Discussion?

UW CSE P503 David Notkin ● Autumn 2007 27

Trust

• At a workshop this past summer, Gary and Judy

Olson (renowned faculty at Michigan with expertise in

HCI, psychology, and more) talked about the

importance of building trust for teams to be

successful
– [It wasn’t a software domain primarily, if I remember correctly, but

that’s not material to the point.]

• They consider ways to build trust at a distance, the

benefits of radically collocated teams, the issues of

culture in building trust, and more…

UW CSE P503 David Notkin ● Autumn 2007 28

I like the ―trust‖ word

• Indeed, it plays a crucial role in effective software

engineering in a large number of dimensions

• Does …

– … the development team trust one another?

– … the development team trust the test team?

– … the test team trust the development team?

– … either team trust the management?

– … the customer trust the company?

– … the company trust the customer?

– … <and more>

UW CSE P503 David Notkin ● Autumn 2007 29

There are other questions of trust

• Do you trust the compiler enough to have it be the

last place you look when tracking down a highly

complicated bug?

– In general, do you trust your tools?

• Do you trust the documentation to be accurate?

• Do you trust your project’s schedule?

• Do you trust the researchers who say to use a new

approach?

UW CSE P503 David Notkin ● Autumn 2007 30

And understanding helps build trust

• I’ve argued several times for tools that provide multiple views on

a concept and allow for some kind of automatic analysis of the

consistency of those views

– Model checking, Alloy-style checks, type checking (to some

degree), etc.

• The iterative process of this ―compare and contrast‖ style allows

software engineers to build a model of these concepts that is

understood with significant depth and care

• Or maybe it’s Reagan-esque: ―trust, but verify‖

• ―Learning research tells us that the time lag from experiment to

feedback is critical …‖ --Kent Beck

UW CSE P503 David Notkin ● Autumn 2007 31

What I learned from p503 this term

UW CSE P503 David Notkin ● Autumn 2007 32

Actionable Principles

• They are hard to get, for whatever reasons

– ―I always wanted to be somebody, but now I

realize I should have been more specific.‖

–Lily Tomlin

• But since they are what people seem to want, it

would be good to continue thinking about what they

might look like

UW CSE P503 David Notkin ● Autumn 2007 33

Denial

• Michael Jackson must have missed some forms of

denial – we are all exceptionally creative about this

– Why did Cleopatra always say “no”?

• In reading p503 papers, I think a major form of denial

was ―this seems like a good idea to me so I’ll buy

almost everything the advocates say about it‖

– This is curious to me, since researchers generally

complain that practitioners demand ―too much‖

information before buying into something

UW CSE P503 David Notkin ● Autumn 2007 34

We still want silver bullets

• Agile

• Aspect-oriented approaches

• Model-driven testing, etc.

• …

• Related to the previous form of denial?

• Remember, Brooks: ―there may not be a royal road,

but there is a road‖

UW CSE P503 David Notkin ● Autumn 2007 35

Measuring improvement in software productivity

would indeed be nice

• But how?

UW CSE P503 David Notkin ● Autumn 2007 36

Back to you…

• Comments?

• Questions?

• Discussions?

UW CSE P503 David Notkin ● Autumn 2007 37

Thank you

• Sorry for the slowness in grading

• Please fill out the evaluation forms … and, if you

wish, get in touch with me by email, phone or in

person if you have other feedback

